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INTRODUCTION 

The information provided in this report is a summary of the research activities 
completed during the period of July 1974 to Jan 2002. Complete details on these 
research activities are provided in the 48 technical reports and 26 journal articles that 
were generated throughout the effort. A listing of these reports ancf journal articles are 
provided in the appendix of this summary. Seven distinct research efforts (all 
documented by the reports and journal articles identified in the appendix) were pursued 
during the reporting period. These efforts are summarized below. 

SUMMARY OF RESEARCH ACTIVITIES 

1. Supersonic Compression Stage Development 
During this effort a single-stage supersonic compressor was designed and 

evaluated through experiments. The compressor was designed for an over-all stage total 
pressure ratio of 3 to 1 at an isentropic efficiency of 82 percent. Design tip speed was 
1600 ft/sec at standard conditions and the inlet hub/tip radius ratio was 0.75. The 
compressor tested was designed for diffusion levels (greater than 0.5) beyond the range 
of past experience in both rotor and stator. Design goals were not met in this study. At 
design speed the flow rate was 30% low, total pressure ratio was 2.63. and the efficiency 
was 68%. The main conclusion drawn from the collective body of data was that the 
behavior of the rotor deviation angle as a function of incidence was such that, as the rotor 
was forced to operate at high incidence angles at part speed, the relative turning angle 
across the rotor was reduced too rapidly for the compressor to recover as design speed 
was approached. The rotor was redesigned with splitter vanes between each of the 
principal rotor airfoils. The splitter vane consisted of an airfoil located circumferentially 
mid-way in the downstream half of each rotor blade passage and extending full span. 
The addition of splitter vanes greatly improved the performance of the rotor, with the 
flow rate only 12 percent low, and rotor efficiency 5 points low, and stage total pressure 
ratio at 2.77. It was concluded that a splitter vane carefully designed in the cascade plane 
might produce much lower losses than reported. 

2. High-Through-Flow Compression Stage Development 
During this research effort the potential to achieve high-flow per compressor 

frontal area was explored. A single stage axial compressor was designed and tested with 
the following performance objectives: 1. Flow per frontal Area- 39.7 lb/sec/ft , 2. Rotor 
tip speed: 1500 ft/sec, 3. Rotor total pressure ratio 1.97, 4. Rotor isentropic efficiency of 
86.9%. The results of the tests indicated that all of the rotor and stage design goals were 
achieved or exceeded. The method of airfoil optimization chosen where the work 
distribution in the rotor, and angular momentum distribution in the stator, were adjusted 
to achieve a minimum static pressure gradient, was a contributing factor to the success of 
this program. In addition the choice of the axial velocity ratio across the rotor of less 
than 1.0 did an excellent job of controlling shock losses. Also the swept leading edge of 
the stator hub had a major impact on the design. The strong sweep at the hub and the 
mild sweep at the tip have forced the fluid with the least momentum toward mid passage 
where it is the most harmless. The stage exhibited certain aeromechanical aspects of 
behavior that could be judged impractical in a blade system designed for some service 
applications. As a result the rotor was redesigned to improve on the aeromechanical 
behavior. The rotor leading and trailing edge thicknesses were doubled. The rotor 
maximum thickness-to-chord ratio distributions were varied. 

3. Tip Clearance and Vortex Generators on Transonic Compressor Performance 
This research study investigated a series of minor parametric modification to the 

compressor stage described in 2. The parametric modifications considered were three 
casing vortex generators configurations, three separate rotor tip running clearances, and 
one rotor tip vortex generator configuration. Both casing vortex generators and a 
reduction of rotor tip clearance produced improvements in performance visible over the 
full span, not localized at the tip. No sign of optimum clearance was evident at practical 



levels of running clearance. In spite of the high rotor diffusion levels, the effect of rotor 
vortex generators was minimal. It was concluded that a rotor leading edge flow 
separation existed with reattachment occurring behind so close to the vortex generators 
that they had no opportunity to act. 

4. Maximum Thickness Location and Cascade Area Ratios in Transonic Rotors 
During the study 5 different transonic compressor rotors were designed 

and tested with parametric variation in max thickness location and cascade area ratios. 
Transonic compressor rotor performance is sensitive to variations in chordwise location 
of maximum thickness. In this study rotor blade max thickness location was moved 
forward in two increments from the nominal 70 percent to 55 and 40 percent chord 
length. At design speed the rotor with its maximum thickness located at 55 percent chord 
length attains the highest peak efficiency among the three rotors, but has the lowest stall 
margin. The difference in performance between the two rotors with the most forward 
locations of max thickness can be attributed to the higher shock losses that result from the 
increased leading edge "wedge angle" as the maximum thickness is moved closer to the 
leading edge. Based on rotor peak efficiency the optimum location of maximum 
thickness was found to be at a location of 55 to 60 percent chord for such low aspect ratio 
transonic rotors. The cascade throat area study revealed that tight throat margins result in 
increased high-speed efficiency with lower part speed performance. Higher internal 
contraction expressed as throat-to-mouth area ratio, also resulted in increased design 
point peak efficiency, but also at the cost of low speed performance. Reducing the 
trailing edge effective camber, expressed as throat-to-exit area ratio, resulted in 
improvement in peak efficiency levels without significantly lowering the stall line. The 
best high speed efficiency was obtained by the rotor with a tight throat margin and 
highest internal contraction, but its efficiency was lower at part speed. 

5. High-Stage-Loading Compressor Concepts 
This research effort had the goal of achieving high levels of compressor stage 

loading such that high overall pressure ratios could be achieved with a minimal number 
of stages. The design criteria for the stage was a pressure ratio of 2.2 with corrected tip 
speeds of 1250ft/sec and flow per unit annulus area of 40.0 lb/sec/ft . The rotor tip and 
stator hub diffusion factors were 0.52. Two single stage configurations were designed 
and tested. The concepts explored during this study were transitioned to an ongoing 
development program. 

6. Swept Aerodynamics for Transonic Compressors 
During this effort a new three-dimensional model was developed for the 

estimation ofshock losses in compressor blade rows near peak efficiency. It was found 
that leading edge sweep if employed as a design variable could minimize shock losses 
and maintain rotor blade structural integrity. With this model 5 rotors were designed 
with different methods of sweeping the leading edge of the rotor blade. They included 
backward (aft) sweep through leading edge variation, forward sweep through leading 
edge variation, sweep though circumferential lean only and sweep through both leading 
edge variations and circumferential lean. For the aft swept transonic rotor configuration 
the experimental results demonstrated that shock loss reductions predicted by the model 
were exceeded. However, near the tip the loss model under predicts the loss because the 
shock geometry assumed by the model remains swept in this region while numerical 
results show a more normal shock orientation. Design specific flow rate of 43.98 
lbm/sec/ft2 was achieved. Design pressure ratio fell short of the 2.04 goal by 0.07 and the 
efficiency was 3 points below prediction, though very high at 91. 



7.   Stage Matching and Blade Row Interactions in Transonic Compressors 
Detailed experimental studies obtained during this phase of the program 

quantified, for the first time, the significance of blade row spacing on aerodynamic loss 
development in transonic compression systems. It was determined that for blade-row 
spacings below 26% stator chord a significant increase in loss occurs due to unsteady 
interactions effects. This increase in loss results in over one point drop in aerodynamic 
efficiency and up to 3% reduction in flow swallowing capability. Both of theses 
performance indices are of significant level to require proper accounting during design. 
In addition the experimental study demonstrated that the dynamic loading on the 
upstream stator as a result of these close spacings is far greater than loading imposed be 
the rotor upstream of the stator. Particle Image Velocimetry (PIV) studies were carried 
out to identify the kinematics of the complex interaction between a rotor bow shock and 
stator wake. This was the world's first PIV investigation of this complex interaction 
phenomenon in a transonic compressor. The PIV results demonstrate that the rotor drives 
the wake shedding at the blade pass frequency instead of the natural shedding frequency 
of the IGV. It was also found that the \elocity field entering the rotor varies considerably 
with rotor blade position for the closer spacing configurations. This variation in 
magnitude and direction of the flow field can have severe consequences on the rotor's 
ability to generate work. 
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